Pathway Bioinformatics

Peter D. Karp, PhD
Bioinformatics Research Group
SRI International
Menlo Park, CA

pkarp@ai.sri.com

BioCyc.org

Overview

- Definitions
- BioCyc collection of Pathway/Genome Databases
- Algorithms for pathway bioinformatics
- Pathway Tools software
 - Navigation and analysis
 - Infer metabolic pathways from genomes
- Pathway Tools ontology

Pathway Bioinformatics

 The subfield of bioinformatics concerned with ontologies, algorithms, databases and visualizations of pathways

• Examples:

- Inference of metabolic pathways from genomes
- Schemas for pathway DBs
- Exchange formats for pathway data
- Classification systems for pathway data
- Pathway diagram layout algorithms

Definition of Metabolic Pathways

 A chemical <u>reaction</u> interconverts chemical compounds (analogous to a production rule)

$$A + B = C + D$$

- An enzyme is a protein that accelerates chemical reactions. Each enzyme is encoded by one or more genes.
- A <u>pathway</u> is a linked set of reactions (analogous to a chain of rules)

$$A \longrightarrow C \longrightarrow E$$

E. coli Pathway: hexitol degradation super-pathway

Superclasses: Carbon compounds, Super-Pathways

Subpathways: mannitol degradation, sorbitol degradation

Locations of Mapped Genes:

Mp. pneumoniae Pathway: pyrimidine ribonucleotide/ribonucleoside metabolism

Definition of Small-Molecule Metabolism

Small-molecule metabolism

- Biochemical factory within the cell
- Hundreds of enzyme-catalyzed reactions operating principally on small-molecule substrates

Small Molecule Metabolism

What is a Metabolic Pathway?

- A pathway is a conceptual unit of the metabolism
- An ordered set of interconnected, directed biochemical reactions
- A pathway forms a coherent unit:
 - Boundaries defined at high-connectivity substrates
 - Regulated as a single unit
 - Evolutionarily conserved across organisms as a single unit
 - Performs a single cellular function
 - Historically grouped together as a unit
 - All reactions in a single organism

EcoCyc Pathways

Pathway length distribution

BioCyc Collection of 507 Pathway/ Genome Databases

Pathway/Genome Database (PGDB) – combines information about

- Pathways, reactions, substrates
- Enzymes, transporters
- Genes, replicons
- Transcription factors/sites, promoters, operons

Tier 1: Literature-Derived PGDBs

- MetaCyc
- EcoCyc -- Escherichia coli K-12
- Tier 2: Computationally-derived DBs,
 Some Curation -- 24 PGDBs
 - HumanCyc
 - Mycobacterium tuberculosis
- Tier 3: Computationally-derived DBs,
 No Curation -- 481 DBs

Family of Pathway/Genome Databases

Pathway Tools Overview

Briefings in Bioinformatics 11:40-79 2010

Pathway Tools Software: PathoLogic

- Computational creation of new Pathway/Genome Databases
- Transforms genome into Pathway Tools schema and layers inferred information above the genome
- Predicts operons
- Predicts metabolic network
- Predicts pathway hole fillers
- Infers transport reactions

Pathway Tools Software: Pathway/Genome Editors

Interactively update PGDBs with graphical editors

 Support geographically distributed teams of curators with object database system

- Gene editor
- Protein editor
- Reaction editor
- Compound editor
- Pathway editor
- Operon editor
- Publication editor

Pathway Tools Software: Pathway/Genome Navigat

 Querying, visualization of pathways, chromosomes, operons

Analysis operations

- Pathway visualization of geneexpression data
- Global comparisons of metabolic networks
- Comparative genomics
- WWW publishing of PGDBs
- Desktop operation

MetaCyc: Metabolic Encyclopedia

- Nonredundant metabolic pathway database
- Describe a representative sample of every experimentally determined metabolic pathway
- Literature-based DB with extensive references and commentary
- Pathways, reactions, enzymes, substrates
- Jointly developed by SRI and Carnegie Institution

Nucleic Acids Research 34:D511-D516 2006

MetaCyc Data -- Version 13.6

Pathways	1,436
Reactions	8,200
Enzymes	6,060
Small Molecules	8,400
Organisms	1,800
Citations	21,700

Taxonomic Distribution of MetaCyc Pathways – version 13.1

Bacteria	883
Green Plants	607
Fungi	199
Mammals	159
Archaea	112

MetaCyc Enzyme Data

- Reaction(s) catalyzed
- Alternative substrates
- Cofactors / prosthetic groups
- Activators and inhibitors
- Subunit structure
- Molecular weight, pl
- Comment, literature citations
- Species

HumanCyc -- HumanCyc.org

- Derived from Ensembl and LocusLink
- Tier 2 PGDB
- Curation has just resumed
- 235 metabolic pathways
- 1,523 small-molecule reactions
- 1,188 substrates
- Genome Biology 6:1-17 2004.

EcoCyc Project – EcoCyc.org

E. coli Encyclopedia

- Review-level Model-Organism Database for E. coli
- Tracks evolving annotation of the E. coli genome and cellular networks
- The two paradigms of EcoCyc

Collaborative development via Internet

- Paulsen (TIGR) Transport, flagella, DNA repair
- Collado (UNAM) -- Regulation of gene expression
- Keseler, Shearer (SRI) -- Metabolic pathways, cell division, proteases
- Karp (SRI) -- Bioinformatics

Paradigm 1: EcoCyc as Textual Review Article

- All gene products for which experimental literature exists are curated with a minireview summary
 - Found on protein and RNA pages, not gene pages!
 - 3257 gene products contain summaries
- Summaries cover function, interactions, mutant phenotypes, crystal structures, regulation, and more
- Additional summaries found in pages for operons, pathways
- EcoCyc cites 14,269 publications

Paradigm 2: EcoCyc as Computational Symbolic Theory

- Highly structured, high-fidelity knowledge representation provides computable information
- Each molecular species defined as a DB object
 - Genes, proteins, small molecules
- Each molecular interaction defined as a DB object
 - Metabolic reactions
 - Transport reactions
 - Transcriptional regulation of gene expression
- 220 database fields capture extensive properties and relationships

Demonstration

Pathway Tools Schema and Semantic Inference Layer

Guiding Principles for the Pathway Tools Ontology of Biological Function

- Encode distinct molecular species as separate objects
- Describe all molecular interactions as reactions
- Layered approach:
 - Molecular species form the base
 - Reactions built from molecular species
 - Pathways built from reactions
- Link catalyst to reaction via Enzymatic-Reaction

Pathway Tools Ontology / Schema

- Ontology classes: 1621
 - Datatype classes: Define objects from genomes to pathways
 - Classification systems / controlled vocabularies
 - Pathways, chemical compounds, enzymatic reactions (EC system)
 - Protein Feature ontology
 - Cell Component Ontology
 - Evidence Ontology
- Comprehensive set of 279 attributes and relationships

Overview of Schema Presentation

- Survey of important classes
- What slots are present within these classes
- How objects are linked together to form a network

Use GKB Editor to Inspect the Pathway Tools Ontology

- GKB Editor = Generic Knowledge Base Editor
- Type in Navigator window: (GKB) or
- [Right-Click] Edit->Ontology Editor
- View->Browse Class Hierarchy
- [Middle-Click] to expand hierarchy
- To view classes or instances, select them and:
 - Frame -> List Frame Contents
 - Frame -> Edit Frame

Root Classes in the Pathway Tools Ontology

- Chemicals
- Polymer-Segments
- Protein-Features
- Paralogous-Gene-Groups
- Organisms
- Generalized-Reactions
- Enzymatic-Reactions
- Regulation
- CCO
- Evidence
- Notes
- Organizations
- People
- Publications

- -- All molecules
- -- Regions of polymers
- -- Features on proteins

- -- Reactions and pathways
- -- Link enzymes to reactions they catalyze
- -- Regulatory interactions
- -- Cell Component Ontology
- -- Evidence ontology
- -- Timestamped, person-stamped notes

Principal Classes

- Class names are usually capitalized, plural, separated by dashes
- Genetic-Elements, with subclasses:
 - Chromosomes
 - Plasmids
- Genes
- Transcription-Units
- RNAs
 - rRNAs, snRNAs, tRNAs, Charged-tRNAs
- Proteins, with subclasses:
 - Polypeptides
 - Protein-Complexes

Principal Classes

- Reactions
- Enzymatic-Reactions
- Pathways
- Compounds-And-Elements
- Regulation

Semantic Network Diagrams

Pathway Tools Schema and Semantic Inference Layer

Genes, Operons, and Replicons

Representing a Genome

Classes:

- ORG is of class Organisms
- CHROM1 is of class Chromosomes
- PLASMID1 is of class Plasmids
- Gene1 is of class Genes
- Product1 is of class Polypeptides or RNA

Polynucleotides

Review slots of COLI and of COLI-K12

Polymer-Segments

Review slots of Genes

Proteins

Proteins and Protein Complexes

- Polypeptide: the monomer protein product of a gene (may have multiple isoforms, as indicated at gene level)
- Protein complex: proteins consisting of multiple polypeptides or protein complexes
- Example: DNA pol III
 - DnaE is a polypeptide
 - pol III core enzyme contains DnaE, DnaQ, HolE
 - pol III holoenzyme contains pol III core enzyme plus three other complexes

Slots of Proteins (DnaE)

- comments, citations
- pl, molecular-weight
- features
- component-of
- gene
- catalyzes [link to Enzymatic-Reaction]
- dblinks

Semantic Network Diagrams

Semantic Inference Layer

- Reactions-of-protein (prot)
 - Returns a list of rxns this protein catalyzes
- Transcription-units-of-proteins(prot)
 - Returns a list of TU's activated/inhibited by the given protein
- Transporter? (prot)
 - Is this protein a transporter?
- Polypeptide-or-homomultimer?(prot)
- Transcription-factor? (prot)
- Obtain-protein-stats
 - Returns 5 values
 - Length of : all-polypeptides, complexes, transporters, enzymes, etc...

Compounds / Reactions / Pathways

Compounds / Reactions / Pathways

- Think of a three tiered structure:
 - Compounds at the bottom
 - Reactions built on top of compounds
 - Pathways built on top of reactions
- Metabolic network can be defined by reactions alone
- Pathways are an additional "optional" structure
- Some reactions not part of a pathway
- Some reactions have no attached enzyme
- Some enzymes have no attached gene

Compounds

Slots of Compounds

- common-name, abbrev-name, synonyms
- comment, citations
- charge, gibbs-0, molecular-weight
- empirical-formula
- structure-atoms, structure-bonds
- appears-in-left-side-of, appears-in-right-side-of

Semantic Inference Layer

- Reactions-of-compound (cpd)
- Pathways-of-compound (cpd)
- Activated/inhibited-by? (cpds slots)
 - Returns a list of enzrxns for which a cpd in cpds is a modulator (example slots: activators-all, activatorsallosteric)
- All-substrates (rxns)
 - All unique substrates specified in the given rxns
- Has-structure-p (cpd)

Reactions

Reactions

- Represent information about a reaction that is independent of enzymes that catalyze the reaction
- Connected to enzyme(s) via enzymatic reaction frames
- Classified with EC system when possible
- Example: 2.7.7.7 DNA-directed DNA polymerization
 - Carried out by five enzymes in E. coli

Slots of Reaction Frames

- Keq
- Left and Right (reactants / products)
 - Can include modified forms of proteins, RNAs, etc here
- Enzymatic-reaction
- In-pathway

Semantic Inference Layer

- Genes-of-reaction (rxn)
- Substrates-of-reaction (rxn)
- Enzymes-of-reaction (rxn)
- Lacking-ec-number (organism)
 - Returns list of rxns with no ec numbers in that database
- Get-reaction-direction-in-pathway (pwy rxn)
- Reaction-type(rxn)
 - Indicates types of Rxn as: Small molecule rxn, transport rxn, protein-small-molecule rxn (one substrate is protein and one is a small molecule), protein rxn (all substrates are proteins), etc.
- All-rxns(type)
 - Specify the type of reaction (see above for type)
- Obtain-rxn-stats
 - Returns six values
 - Length of : all-rxns, transport, non-transport, etc...

Enzymatic Reactions (DnaE and 2.7.7.7)

- A necessary bridge between enzymes and "generic" versions of reactions
- Carry information specific to an enzyme/reaction combination:
 - Cofactors and prosthetic groups
 - Alternative substrates
 - Links to regulatory interactions
- Frame is generated when protein is associated with reaction (via protein or reaction editor)

Regulation of Enzyme Activity

Semantic Network Diagrams

Pathway Tools Schema and Semantic Inference Layer: Pathways

Pathway Ontology

Slots in pathway:

Reaction-List, Predecessor-List

$$A \xrightarrow{R1} B \xrightarrow{R2} C \xrightarrow{R3} D$$

$$A \xrightarrow{R1} B \xrightarrow{R2} C$$

$$A \xrightarrow{R1} B \xrightarrow{R3} D$$

R2: Left = B, Right =
$$C$$

R3: Left =
$$C$$
, Right = D

$$R1: Left = A, Right = B$$

R2: Left = B, Right =
$$C$$

Predecessor list:

(R1 R2) (R2 R3)

Predecessor list: (R1 R2) (R1 R3)

Super-Pathways

- Collection of pathways that connect to each other via common substrates or reactions, or as part of some larger logical unit
- Can contain both sub-pathways and additional connecting reactions
- Can be nested arbitrarily
- REACTION-LIST: a pathway ID instead of a reaction ID in this slot means include all reactions from the specified pathway
- PREDECESSORS: a pathway ID instead of a tuple in this slot means include all predecessor tuples from the specified pathway

Querying Pathways Programmatically

- See http://bioinformatics.ai.sri.com/ptools/ptools-resources.html
- (all-pathways)
- (base-pathways)
 - Returns list of all pathways that are not super-pathways
- (genes-of-pathway pwy)
- (unique-genes-of-pathway pwy)
 - Returns list of all genes of a pathway that are not also part of other pathways
- (enzymes-of-pathway pwy)
- (substrates-of-pathway pwy)
- (variants-of-pathway pwy)
 - Returns all pathways in the same variant class as a pathway
- (get-predecessors rxn pwy), (get-successors rxn pwy)
- (get-rxn-direction-in-pathway pwy rxn)
- (pathway-inputs pwy), (pathway-outputs pwy)
 - Returns all compounds consumed (produced) but not produced (consumed) by pathway (ignores stoichiometry)

Regulation

Encoding Cellular Regulation in Pathway Tools -- Goals

- Facilitate curation of wide range of regulatory information within a formal ontology
- Compute with regulatory mechanisms and pathways
 - Summary statistics, complex queries
 - Pattern discovery
 - Visualization of network components
- Provide training sets for inference of regulatory networks
- Interpret gene-expression datasets in the context of known regulatory mechanisms

Regulation in Pathway Tools

- Substrate-level regulation of enzyme activity
- Binding to proteins or small molecules (phosphorylation)
- Regulation of transcription initiation
- Attenuation of transcription
- Regulation of translation by proteins and by small RNAs

Regulation

- Class Regulation with subclasses that describe different biochemical mechanisms of regulation
- Slots:
 - Regulator
 - Regulated-Entity
 - Mode
 - Mechanism

Regulation of Enzyme Activity

- Class Regulation-of-Enzyme-Activity
- Each instance of the class describes one regulatory interaction

Slots:

- Regulator -- usually a small molecule
- Regulated-Entity -- an Enzymatic-Reaction
- Mechanism -- One of:
 - Competitive, Uncompetitive, Noncompetitive, Irreversible, Allosteric, Unkmech, Other
- Mode -- One of: + , -

Transcription Initiation

Class Regulation-of-Transcription-Initiation

Slots:

- Regulator -- instance of Proteins or Complexes (a transcription-factor)
- Regulated-Entity -- instance of Promoters or Transcription-Units or Genes
- Mode -- One of: + , -

Other Features of Ontology

- Evidence codes
- Curator crediting system

Inference Algorithms

PathoLogic: Inference of Pathway Complement

- An additional level of inference after genome annotation
- Place predicted genes in their biochemical context
- Information reduction device
- Assess coherence of the set of genes in a genome
- Identify pathway holes and singleton enzymes
- Provides a framework for analysis of functionalgenomics data

Inference of Metabolic Pathways

Genbank Format:

PathoLogic Format:

ID	CT370
NAME	aroE
STARTBASE	422054
ENDBASE	423490
PRODUCT	Shikimate 5-Dehydrogenase
DBLINK	PID:g3328794
PRODUCT-TYPE	P
EC	1.1.1.25

Pathway Prediction

- Step 1: Infer reactome
- Step 2: Infer metabolic pathways from reactome

Inference of Reactome

- Given genome annotation, infer metabolic reactions that can be catalyzed by the genome
 - EC numbers
 - Enzyme names
 - Gene Ontology annotations

• Complications:

- Most genomes contain a subset of above annotations
- Enzyme names sometimes ambiguous
- Some reactions occur in multiple pathways
 - 99 of 744 reactions in *E. coli*
- Pathway variants

Match Enzymes to Reactions

Vibrio cholerae Enzyme Matching Results

Pathway Prediction Algorithm

- Two pathway lists:
 - U: Undecided status
 - K: Keep

 Initialize U to contain all MetaCyc pathways for which at least one reaction has an enzyme

Pathway Prediction Algorithm

• For each P in U:

- If current organism is outside taxonomic range of P AND at least one reaction in P lacks an enzyme, delete P from U
- If all reactions of P designated as key reactions have no enzyme, delete P from U

Pathway Prediction Algorithm

• Iterate through P in U until U is unchanged:

- If P should be kept, move P to K
 - A reaction in P is unique to P and has an enzyme
 - At most one reaction in P has no enzyme
 - The enzymes present for P are not a subset of the enzymes present for a variant pathway of P
- If P should be deleted, delete P from U
 - At most one reaction R in P has an enzyme, and R is not unique to P
 - The pathway is a biosynthetic pathway missing its final steps
 - The pathway is a catabolic pathway missing its initial steps

Accuracy: 91%

Pathway Evidence Report

Biosynthesis: Cofactors, Prosthetic Groups, Electron Carriers

Pathway	Pathway Glyph		Rxns Present in V. cholerae	Rxns Present in Other Pwys	Other Pwys	
biosynthesis of proto- and siroheme		15	12	2	tRNA charging pathway cobalamin biosynthesis II (aerobic pathway)	
biotin biosynthesis I	} ~~~	4	4	0	(none)	
cobalamin biosynthesis I		7	6	2	cobalamin biosynthesis II (aerobic pathway)	
cobalamin biosynthesis II (aerobic pathway)	• • • • • • • • • • • • • • • • • • • 	18	5	3	cobalamin biosynthesis I biosynthesis of proto- and siroheme	

Limitations of Pathway Inference

- Can be misled by missing or incorrect functional assignments
- No sequences known for many enzymes
- Uncertainty for short pathways

Pathway Hole Filling

 Definition: Pathway Holes are reactions in metabolic pathways for which no enzyme is identified

Step 2: BLAST against target genome

organism 1 enzyme A
organism 2 enzyme A
organism 3 enzyme A
organism 4 enzyme A
organism 5 enzyme A
organism 6 enzyme A
organism 7 enzyme A
organism 8 enzyme A

Step 3 & 4: Consolidate hits and evaluate evidence

7 queries have highscoring hits to sequence Y

gene Z

Bayes Classifier

P(protein has function X| E-value, avg. rank, aln. length, etc.)

Pathway Hole Filler

- Why should hole filler find things beyond the original genome annotation?
- Reverse BLAST searches more sensitive
- Reverse BLAST searches find second domains
- Integration of multiple evidence types

- In 90 minutes, I only got to here
- Included a 10-15 min demo
- 3/8/2007 Brutlag class lecture

PathoLogic Step 6: Build Cellular Overview Diagram

- Diagram encompassing metabolic, transport, and other cellular networks
- Automatically generated for every BioCyc DB using advanced graph layout algorithm
- Harness the power of the human visual system to interpret patterns in a mechanistic context
- Can be zoomed, interrogated, and painted with experimental or comparative data

Pathway Algorithms

- Automated layout of metabolic pathways
 - Bioinformatics and Genome Research Conference 1994 p225
- Automated layout of cellular overview diagram
- Automated generation of metabolic map poster
- Forward propagation of metabolites through the metabolic network
 - Consistency of a PGDB with respect to known growth-media requirements
 - Pacific Symp Biocomputing 2001:471
- Identify dead-end metabolites
- Infer drug targets as choke points in metabolic network
 - Genome Research 14:917 2004

Dead End Metabolites

- Clues to extra/missing reactions
- A small molecule C is a dead-end if:
 - (Def 1 easier to compute; Def 2 more accurate)

• Definition 1:

- C is a substrate in only one reaction of the set of SMM reactions occurring in Compartment AND
- No transporter acts on C in Compartment, nor on parent classes of C

Definition 2:

- C is produced only by SMM reactions in Compartment, and no transporter acts on C in Compartment OR
- C is consumed only by SMM reactions in Compartment, and no transporter acts on C in Compartment

Global Consistency Checking of Biochemical Network

• Given:

- A PGDB for an organism
- A set of initial metabolites

Infer:

- What set of products can be synthesized by the smallmolecule metabolism of the organism
- Can known growth medium yield known essential compounds?

Algorithm: Forward Propagation Through Production System

- Each reaction becomes a production rule
- Each metabolite in nutrient set becomes an axiom

Initial Metabolite Nutrient Set (Total: 21 compounds)

Nutrients (8) (M61 Minimal growth medium)	H ⁺ , Fe ²⁺ , Mg ²⁺ , K ⁺ , NH ₃ , SO ₄ ²⁻ , PO ₄ ²⁻ , Glucose
Nutrients (10) (Environment)	Water, Oxygen, Trace elements (Mn ²⁺ , Co ²⁺ , Mo ²⁺ , Ca ²⁺ , Zn ²⁺ , Cd ²⁺ , Ni ²⁺ , Cu ²⁺)
Bootstrap Compounds (3)	ATP, NADP, CoA

Essential Compounds E. coli Total: 41 compounds

- Proteins (20)
 - Amino acids
- Nucleic acids (DNA & RNA) (8)
 - Nucleosides
- Cell membrane (3)
 - Phospholipids
- Cell wall (10)
 - Peptidoglycan precursors
 - Outer cell wall precursors (Lipid-A, oligosaccharides)

Nutrients: A, B, C, E, F

$$A + B \rightarrow W$$

$$C + D \rightarrow X$$

$$E + F \rightarrow Y$$

$$W + Y \rightarrow Z$$

Produced Compounds: W, Y, Z

Results

- Phase I: Forward propagation
 - 21 initial compounds yielded only half of the 41 essential compounds for E. coli
- Phase II: Manually identify
 - Bugs in EcoCyc (e.g., two objects for tryptophan)
 - \bullet A \rightarrow B B' \rightarrow C
 - Incomplete knowledge of E. coli metabolic network
 - \bullet A + B \rightarrow C + D
 - "Bootstrap compounds"
 - Missing initial protein substrates (e.g., ACP)
 - Protein synthesis not represented
- Phase III: Forward propagation with 11 more initial metabolites
 - Yielded all 41 essential compounds

Summary

Pathway/Genome Databases

- MetaCyc non-redundant DB of literature-derived pathways
- Additional organism-specific PGDBs available through SRI at BioCyc.org
- Computational theories of biochemical machinery

Pathway Tools software

- Extract pathways from genomes
- Morph annotated genome into structured ontology
- Distributed curation tools for MODs
- Query, visualization, WWW publishing

How to Learn More

- BioCyc Webinars
 - See BioCyc.org
- BioCyc publications page
 - BioCyc.org
- Pathway Tools training course
- Pathway Tools feedback sessions
 - ptools-support@ai.sri.com
- Try out Pathway Tools

Additional Pathway Tools Algorithms

- Predict metabolic pathway complement
- Automatic layout of Cellular Overview diagram
- Paint Omics datasets onto Cellular Overview
- Compare metabolic networks
- Reaction balance checker
- Chemical substructure search
- Predict operons
- Predict pathway hole fillers
- Qualitative path tracing from network inputs to network outputs